Automotive Cybersecurity
The Essential Guide to ISO/SAE 21434

How to manage the challenges of the new automotive cybersecurity standards and regulations
Philipp Veronesi is founder and managing director of CYRES Consulting, one of the leading automotive cybersecurity consultancies with headquarters in Munich, Germany, and a branch office in Riga, Latvia. In addition to its consulting services for OEMs, leading global Tier-1 suppliers and beyond, CYRES also runs the CYRES Academy which has established itself as a highly reputable global provider of advanced education, certified training and coaching in the field of applied cybersecurity in the automotive industry. Philipp Veronesi has many years of practical experience not only in engineering but also in the management of technically challenging development projects for leading players in the automotive industry, including BMW, Audi, Rolls Royce, and others.

Manuel Sandler is Associate Partner at CYRES Consulting and is responsible for the technical project business and the building of new knowledge in the fast-moving field of cybersecurity in the automotive industry. Manuel Sandler has many years of experience in global project and process management in various parts of the value chain, including OEMs and Tier-1. He is Provisional Assessor in ASPICE and an expert in Engineering Process Development, ISO 26262, ISO/IEC 15288 and ISO/SAE 21434 Road Vehicles - Cybersecurity Engineering, to which he contributed as a member of the Working Group.
Content Overview

Preface i
How to Use This Practical Guide iv
List of Figures xiii
List of Tables xvii
Acronyms xix
1 Cybersecurity Awareness 1
2 Regulations, Standards, and Initiatives 25
3 Automotive Cybersecurity Ecosystem 73
4 Cybersecurity Management 103
5 Cybersecurity Development 159
6 Cybersecurity Risk Assessment 195
7 Cybersecurity Implementation 249
8 Cybersecurity Controls 287
9 Cybersecurity Verification and Validation 333
10 Conclusion 357
Annex A Terms and Definitions 359
Annex B ISO/SAE DIS 21434 Requirements Mapping 364
Annex C ISO/SAE DIS 21434 Work Product List 379
Annex D Cybersecurity Development Interface Agreement 392
Annex E Methods for Verification and Testing 401
Annex F Requirements from UN Regulation No. 155 404
Annex G Characteristics for Good Requirements 416
Annex H Breakdown of Cybersecurity Plan 418
Bibliography 425
Table of Contents

Preface i
How to Use This Practical Guide iv
List of Figures xiii
List of Tables xvii
Acronyms xix

1 Cybersecurity Awareness 1
 1.1 Cybersecurity incidents are not new 3
 1.1.1 Experimental hack of a modern automobile (2010) 3
 1.1.2 Jeep hack (2015) 4
 1.1.3 Other relevant hacks 6
 1.2 The value at risk from cybercrime 10
 1.2.1 Risks for organizations 10
 1.2.2 Risks for individuals 12
 1.3 Enablers vs. inhibitors of cybersecurity 13
 1.3.1 The industry’s view on cybersecurity 13
 1.3.2 Challenges and pressures faced by OEMs and Tier-N suppliers .. 14
 1.3.3 Inhibitors of cybersecurity 15
 1.3.4 Cybersecurity as a business enabler 17
 1.4 Key trends impacting automotive cybersecurity 18
 1.4.1 Autonomous driving 19
 1.4.2 Electric vehicles 20
 1.4.3 Connectivity and digitalization 21
 1.4.4 Shared mobility 23
 1.4.5 Further drivers of cybersecurity in the automotive industry .. 23

2 Regulations, Standards, and Initiatives 25
 2.1 Upcoming regulations 25
 2.1.1 The difference between standards, regulations, and laws ... 25
 2.1.2 UNECE WP.29 GRVA – Regulations No. 155 on cybersecu-
 rity and No. 156 on software updates 27
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.3</td>
<td>Impact and outreach of the UN Regulations No. 155 and No. 156</td>
<td>28</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Scope of the regulations</td>
<td>28</td>
</tr>
<tr>
<td>2.1.5</td>
<td>UN Regulation No. 155 on cybersecurity</td>
<td>29</td>
</tr>
<tr>
<td>2.1.6</td>
<td>UN Regulation No. 156 on software updates</td>
<td>33</td>
</tr>
<tr>
<td>2.1.7</td>
<td>Rethinking cybersecurity along the value chain</td>
<td>35</td>
</tr>
<tr>
<td>2.1.8</td>
<td>Preparing the value chain for compliance</td>
<td>36</td>
</tr>
<tr>
<td>2.2</td>
<td>Standardizing cybersecurity engineering</td>
<td>36</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Existing cybersecurity standards</td>
<td>37</td>
</tr>
<tr>
<td>2.2.2</td>
<td>ISO/SAE 21434 – Road vehicles – Cybersecurity engineering</td>
<td>39</td>
</tr>
<tr>
<td>2.2.3</td>
<td>ISO 24089 - Road vehicles - Software update engineering</td>
<td>44</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Ensuring compliance with the UN Regulations by means of ISO standards</td>
<td>45</td>
</tr>
<tr>
<td>2.3</td>
<td>Cybersecurity related regulations, standards, and guidelines</td>
<td>47</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Towards a holistic approach to automotive cybersecurity</td>
<td>48</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Developing automotive cybersecurity as a holistic concept</td>
<td>48</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Mandatory and recommended references relevant to automotive cybersecurity</td>
<td>53</td>
</tr>
<tr>
<td>2.4</td>
<td>The role of governments and authorities</td>
<td>59</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Europe-based cybersecurity authorities and frameworks</td>
<td>60</td>
</tr>
<tr>
<td>2.4.2</td>
<td>US-based authorities and frameworks relevant to cybersecurity</td>
<td>61</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Cybersecurity authorities and frameworks in Asia/Pacific</td>
<td>62</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Authorities and frameworks with a focus on automotive cybersecurity</td>
<td>63</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Cybersecurity addressed in laws and regulations</td>
<td>63</td>
</tr>
<tr>
<td>2.5</td>
<td>Relevant initiatives and public resources</td>
<td>64</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Hacking conventions</td>
<td>64</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Public resources</td>
<td>66</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Conferences</td>
<td>67</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Funded projects</td>
<td>68</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Benefits of initiatives and public resources</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>Automotive Cybersecurity Ecosystem</td>
<td>73</td>
</tr>
<tr>
<td>3.1</td>
<td>Revolution of the ecosystem</td>
<td>73</td>
</tr>
<tr>
<td>3.2</td>
<td>Collaboration and engagement with relevant third parties</td>
<td>75</td>
</tr>
<tr>
<td>3.3</td>
<td>The ecosystem impacts of cybersecurity</td>
<td>77</td>
</tr>
<tr>
<td>3.4</td>
<td>Attack surface of modern vehicles</td>
<td>80</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Attack vectors in automobiles</td>
<td>81</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Attack vectors in backend infrastructures of the connected vehicle</td>
<td>83</td>
</tr>
<tr>
<td>3.5</td>
<td>Vehicle communication</td>
<td>84</td>
</tr>
<tr>
<td>3.5.1</td>
<td>In-vehicle communication</td>
<td>84</td>
</tr>
<tr>
<td>3.5.2</td>
<td>V2X communication</td>
<td>88</td>
</tr>
</tbody>
</table>
3.5.3 Safety and cybersecurity implications of V2X 90
3.6 Cybersecurity throughout the product lifecycle 91
 3.6.1 Research, concept and development 92
 3.6.2 Production .. 94
 3.6.3 Logistics and sales 95
 3.6.4 Operations and maintenance 95
 3.6.5 Decommissioning and end of support 96
 3.6.6 Adopting a cybersecurity lifecycle for the ecosystem . 97

4 Cybersecurity Management .. 103
 4.1 Cybersecurity management at the organizational level 104
 4.1.1 Pre-conditions for organizational cybersecurity 104
 4.1.2 Continuous cybersecurity activities 110
 4.1.3 Supporting processes 116
 4.2 Cybersecurity management at project level 122
 4.2.1 The impact of cybersecurity on project management . 122
 4.2.2 Cybersecurity planning 126
 4.2.3 Shortened cybersecurity activities 133
 4.2.4 Distributed development 138
 4.2.5 Cybersecurity assessment 143
 4.2.6 Cybersecurity case 145
 4.3 Cybersecurity management during post-development 147
 4.3.1 Release for post-development or production 148
 4.3.2 Cybersecurity during production 149
 4.3.3 Secure operations 150
 4.3.4 Vulnerability management 155
 4.3.5 Cybersecurity updates throughout the lifecycle 156
 4.3.6 Decommissioning and end of cybersecurity support . 157

5 Cybersecurity Development ... 159
 5.1 Relationship between system safety and system cybersecurity engineering during development 160
 5.2 Cybersecurity relevance 161
 5.3 Concept phase .. 163
 5.3.1 Item definition 164
 5.3.2 Identifying cybersecurity goals and claims 168
 5.3.3 Verification of cybersecurity goals and claims 171
 5.3.4 Cybersecurity concept 172
 5.4 Product development .. 180
 5.4.1 Cybersecurity requirements and architectural design . 183
 5.4.2 Cybersecurity integration and verification 188
 5.5 Cybersecurity validation 192

6 Cybersecurity Risk Assessment 195
 6.1 Asset identification .. 196
6.1.1 Derive candidate assets ... 197
6.1.2 Determination of security properties 200
6.1.3 Creation of damage scenarios 201
6.1.4 Final cybersecurity assets confirmation 203
6.2 Threat scenario identification 203
 6.2.1 Recommended approach to threat scenario identification 204
6.3 Impact assessment .. 210
 6.3.1 Impact categories and severity levels 211
6.4 Attack path analysis .. 216
 6.4.1 Top-down attack path analysis 217
 6.4.2 An example of top-down attack path analysis 223
6.5 Attack feasibility rating .. 225
 6.5.1 Principles of attack feasibility rating 226
 6.5.2 Examples of attack feasibility rating 228
6.6 Risk determination .. 243
 6.6.1 Final determination of attack feasibility 243
 6.6.2 Conversion of impact and attack feasibility to risk value 244
6.7 Risk treatment decision 245
 6.7.1 Retention .. 246
 6.7.2 Reduction .. 246
 6.7.3 Sharing .. 246
 6.7.4 Avoidance ... 247
6.8 Cybersecurity risk management according to ISO/SAE DIS 21434 - Summary ... 247

7 Cybersecurity Implementation 249
 7.1 Secure implementation versus implementing security 249
 7.1.1 Secure implementation 250
 7.1.2 Implementing security 251
 7.2 Implementation of hardware security 251
 7.2.1 Cybersecurity in the hardware domain 252
 7.2.2 Secure hardware implementation 255
 7.2.3 Hardware security modules 257
 7.2.4 Security during manufacturing and servicing 259
 7.3 Implementation of software security 260
 7.3.1 Establishing a secure development environment 261
 7.3.2 Secure software implementation 262
 7.3.3 Implementing software-based security 267
 7.4 AUTOSAR as unified software architecture 268
 7.4.1 History and background of AUTOSAR 269
 7.4.2 AUTOSAR platforms 270
 7.4.3 Classic AUTOSAR - Crypto stack 271
 7.4.4 Classic AUTOSAR - High-level security modules 273
7.5 Secure reuse of components ... 273
 7.5.1 Opportunities and benefits of component reuse 275
 7.5.2 Drawbacks and obstacles to reuse .. 278
 7.5.3 Challenges of component reuse for automotive cybersecurity 280
 7.5.4 Secure reuse of COTS .. 286

8 Cybersecurity Controls ... 287
 8.1 What are cybersecurity controls? .. 287
 8.2 Cybersecurity requirements and controls 288
 8.3 Selection of cybersecurity controls ... 290
 8.3.1 Risk assessments as a basis for selecting and documenting cybersecurity controls .. 291
 8.3.2 The need for control selection approaches 292
 8.3.3 Baseline control selection approach 292
 8.3.4 Organization-generated control selection approach 297
 8.3.5 Classification of cybersecurity controls 298
 8.4 Cybersecurity controls for the entire ecosystem and lifecycle 303
 8.4.1 Controls for production line security 303
 8.4.2 Controls for vehicle security ... 305
 8.4.3 Controls for backend security ... 305
 8.5 In-vehicle cybersecurity controls ... 307
 8.5.1 Cryptography ... 308
 8.5.2 Access control ... 317
 8.5.3 Secure on-board communication 319
 8.5.4 Network segmentation and isolation 322
 8.5.5 Trusted environment ... 327
 8.5.6 System resilience .. 329
 8.5.7 Monitoring and logging ... 331

9 Cybersecurity Verification and Validation .. 333
 9.1 V&V – Definition and comparison .. 333
 9.2 V&V methods ... 334
 9.3 Cybersecurity impact on V&V .. 335
 9.3.1 Cybersecurity methods ... 335
 9.3.2 Cybersecurity activities .. 337
 9.4 Cybersecurity V&V strategy ... 338
 9.4.1 Need for cybersecurity V&V strategy 338
 9.4.2 Goals of cybersecurity V&V .. 340
 9.4.3 Rules for cybersecurity V&V .. 341
 9.4.4 Expectations and open questions 342
 9.5 Cybersecurity testing ... 343
 9.5.1 Functional cybersecurity testing 343
 9.5.2 Automotive vulnerability scanning 345
 9.5.3 Automotive fuzzing .. 346
9.5.4 Automotive penetration testing 351

10 Conclusion .. 357
Annex A Terms and Definitions 359
Annex B ISO/SAE DIS 21434 Requirements Mapping 364
Annex C ISO/SAE DIS 21434 Work Product List 379
Annex D Cybersecurity Development Interface Agreement 392
Annex E Methods for Verification and Testing 401
Annex F Requirements from UN Regulation No. 155 404
Annex G Characteristics for Good Requirements 416
Annex H Breakdown of Cybersecurity Plan 418
Bibliography .. 425
Additional Information

CYRES Consulting's ISO/SAE 21434 Pocket Guide was originally an internal tool for the structured review of the ISO/SAE 21434 Road Vehicles - Cybersecurity Engineering. Since publication of the first edition, it has become a valued resource on the desks of countless automotive cybersecurity experts worldwide. The print publication, officially licensed by ISO/DIN, covers all the requirements and work products of every clause of the standard in a practical pocket-size format. Tabs make it easy to navigate through the complete standard, which otherwise comes in more than one hundred A4 pages. In practical daily work, in training, and when used as a reference book, the Pocket Guide is the essential tool for working on ISO/SAE 21434. Contact us to order plenty of copies for your organization. You will find the ISO/SAE 21434 Pocket Guide in our online shop.

There is no doubt about it: ISO/SAE 21434 is becoming the main reference point for cybersecurity in the automotive industry. Worldwide, along the entire value chain and at every stage of the product lifecycle, people who carry responsibility are facing these questions: What impact does ISO/SAE 21434 have on my organization? What does it mean for our development project? And how much does it affect engineering processes? Cybersecurity is not completely new territory, of course: Work is obviously already being done in many areas. At the same time, the requirements of clients and end customers are already becoming more specific. And official assessments and audits are slowly but surely appearing on the agenda. The CYRES Consulting ISO/SAE 21434 Gap Analysis meets the challenge of this present situation exactly. In contrast with an audit and assessment, the Gap Analysis not only examines the current status quo, but also provides organization-specific recommendations for action, so that organizations can tackle, at an early stage, the adjustments that have to be made to meet the objective of compliance with ISO/SAE 21434. Get to know the ISO/SAE 21434 Gap Analysis now!

https://www.cyres-consulting.com/iso-21434-gap-analysis/
Learn what’s new! With the CYRES Academy we are systematically establishing the transfer of application-based knowledge about automotive cybersecurity, the ISO/SAE 21434 and beyond into practical application. In addition to the book which you see in front of you, our various training formats provide excellent opportunities for getting started on the subject. We also offer advanced learners a variety of training modules that are tailored to different roles in the company and in development projects. Our trainings should not only be seen as single units of education: Within the Automotive Cybersecurity Professional (ACP) Framework they form the basis for company-wide competence management around automotive cybersecurity. The focus is not only on demand-oriented training: The associated certification model is a good basis for meeting the obligation placed on organizations to provide evidence that automotive cybersecurity competence and awareness as set out in ISO/SAE 21434 and UN R155 are being fed into the organization.

https://www.cyres-consulting.com/academy/

Cybersecurity in the automotive industry is still a relatively new subject area. Serious expertise and reliable practical knowledge are still rare. This means that reliable information gathering is becoming a critical factor of success for cybersecurity managers and decision-makers. We are keen to make application-oriented knowledge tangible. This book will already provide you with a first glimpse of what we have to offer. We are also currently developing additional Internet-based learning opportunities: From our learning platform and video courses to regular informational webcasts and newsletters, blogs, whitepapers, and more.

At the same time, we value face-to-face discussions and feedback from experts in the field. Please feel free to make full use of the various means of communication which we provide on social networks. We look forward to being in touch with you.

https://www.cyres-consulting.com/blog/